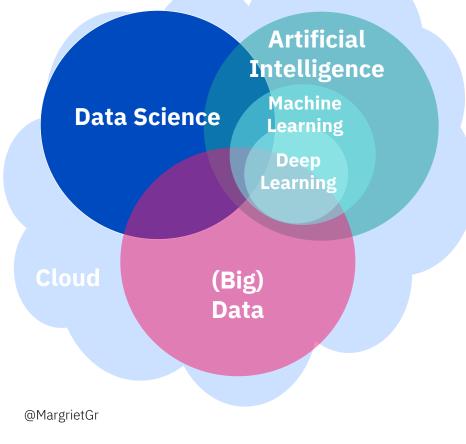
Fair and Explainable AI

Dr. Margriet Groenendijk Data Science & AI Developer Advocate

IBM

Data & AI Developer Advocacy



Build Smart. Build Secure.

More than 100 open source projects, a library of knowledge resources, developer advocates ready to help, and a global community of developers. What will you create?

developer.ibm.com

Code patterns Tutorials Blogs, articles Models, data Open source projects Events, podcasts, videos

What is the A-level algorithm? How the Ofqual's grade calculation worked – and its effect on 2020 results explained

The algorithm which used school data to calculate A-level grades has been accused of widening inequality

https://inews.co.uk/news/education/a-level-algorithm-what-ofqual-grades-how-work-results-2020-explained-581250

An Algorithm Determined UK Students' Grades. Chaos Ensued

This year's A-Levels, the high-stakes exams taken in high school, were canceled due to the pandemic. The alternative only exacerbated existing inequities.

https://www.wired.com /story/an-algorithmdetermined-ukstudents-gradeschaos-ensued/

Why did the A-level algorithm say no?

Sean Coughlan Education correspondent

① 14 August 2020

f 🔗 🔰 🖾 🤘

Exam results 2020

A protest over A-level results gathered in Westminster

AI is used in many decision-making applications

Credit Employment Admission Sentencing Healthcare

Fair and explainable AI pipelines

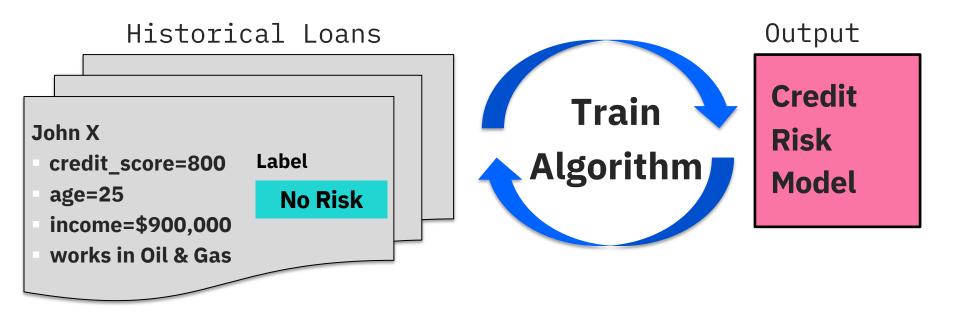
Machine learning Algorithm selection

Deep learning Neural network design

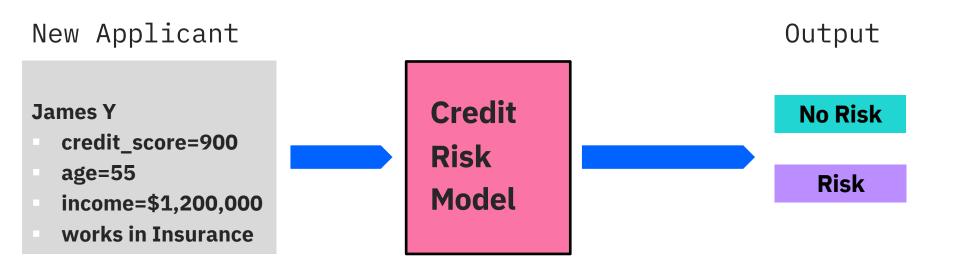
Natural Language Processing Interactions between computers and human languages

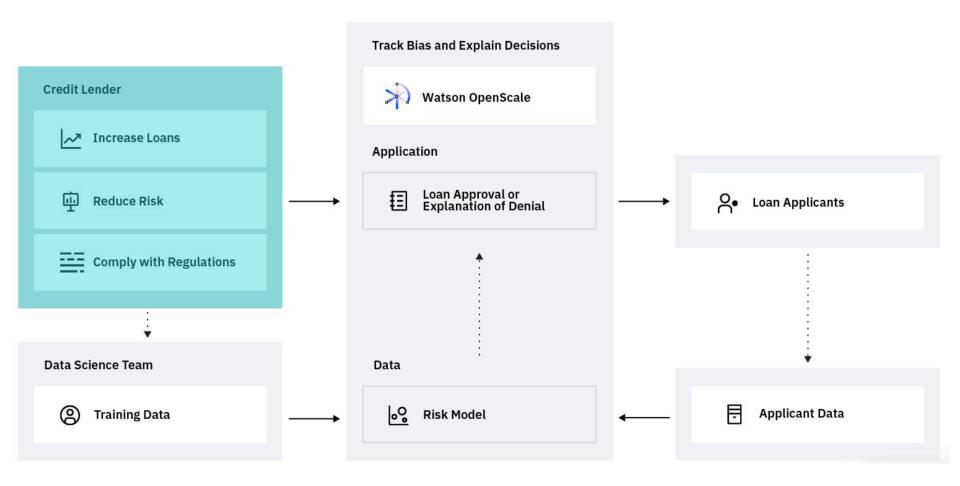
Artificial intelligence Systems architecture

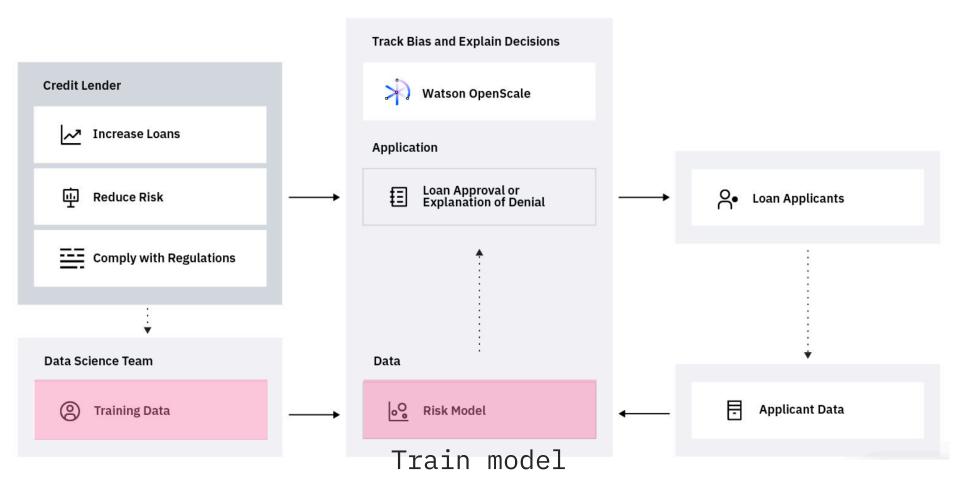
Example: credit risk

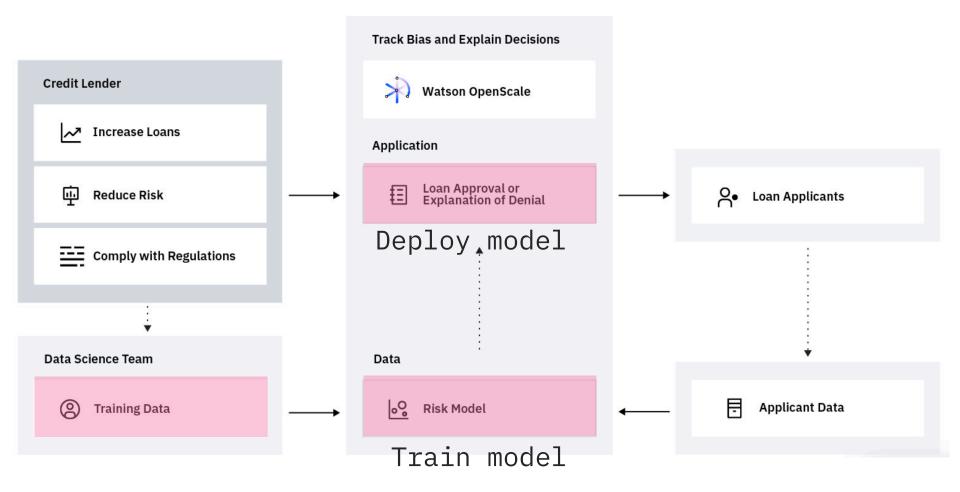


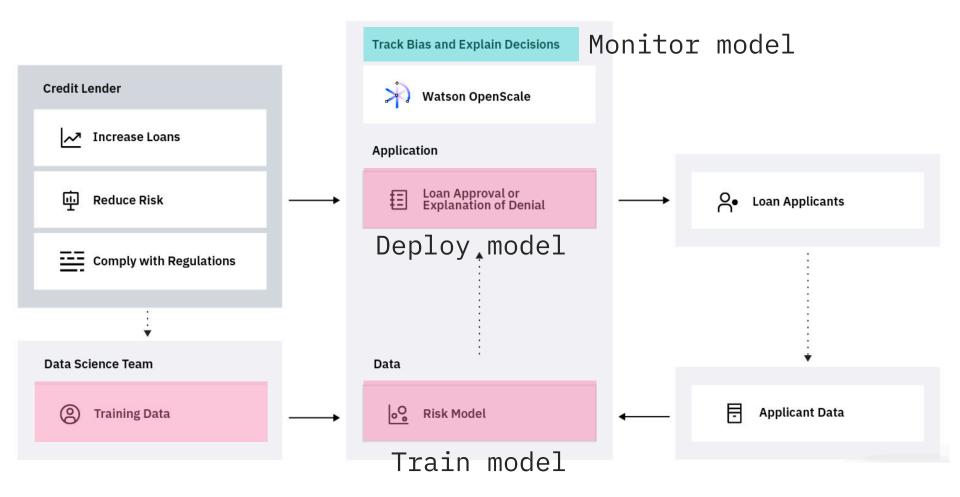
Example: credit risk

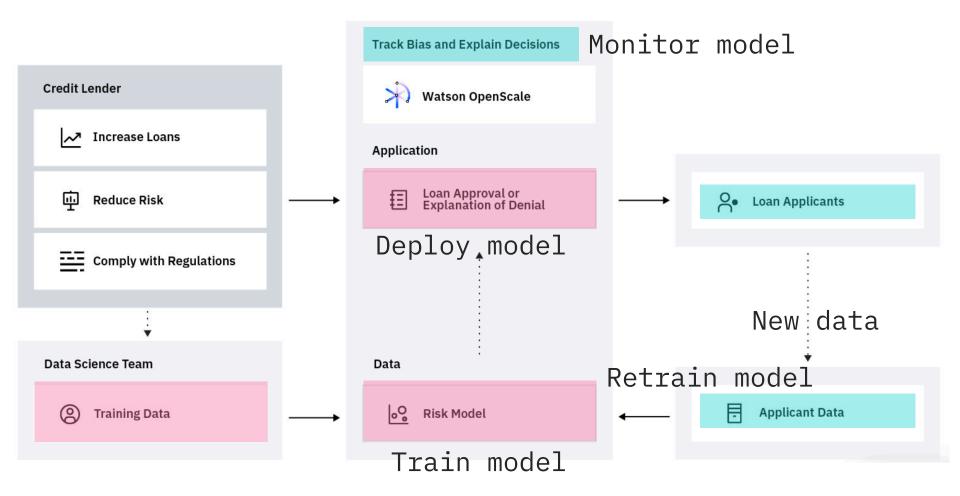




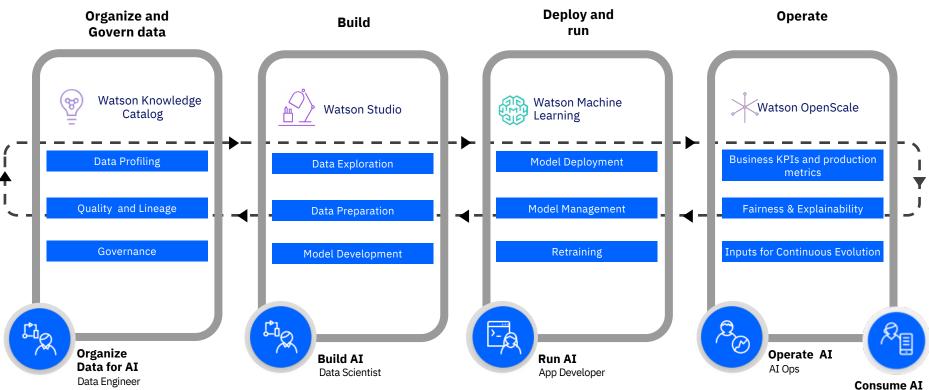








AI pipeline



Business user

IBM Cloud Pak for Data

Fully-integrated data and AI platform

Cloud Pak for Data...

- Runs on Red Hat OpenShift and is a fully-integrated data and AI platform
- Supports multi-cloud environments such as AWS, Azure, Google Cloud, IBM Cloud, and private clouds
- Allows you to build, deploy, and manage ML models that scale throughout the organization and automates the AI lifecycle
- Enables integrations to popular open source and cloud native tools, as well as IBM application middleware and development services

Developer benefits...

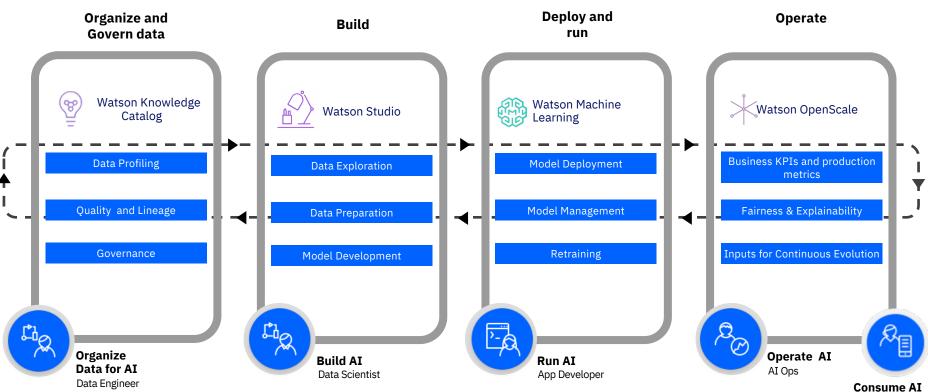
- Full control over your data and its privacy
- Seamless integration of developer tools -- streamlines work by creating a pipeline for collecting, organizing, analyzing, and consuming data
- Single platform for data management and analysis, allowing developers to easily manage data connections and access to analysis tools
- Core operational services provided, including logging, monitoring, and security

https://ibm.biz/cpd-experiences

Build once. Deploy anywhere.

Consulting Services	Strategy	٢	Migration		Development			Management		
	ISV Applications/Solutions									
Advanced Technologies	AI	Analytic	CS	Blockchain		IoT			Quantum	
Cloud Paks	Cloud Pak for Applications	Cloud Pak for Data	Cloud Pa Integrati		Cloud Pak for Automation		Cloud Pak for Multicloud Management		Cloud Pak for Security	
Foundation	Open Hybrid Multicloud Platform									
4	OpenShift									
Infrastructure	IBM public cloud	public AWS Micr d Azur				Private		Z LinuxOne	Endpoints	
	Ŭ		Ś			Ŭ		Power Storage	(\widehat{e})	

AI pipeline in Cloud Pak for Data (aaS)



Business user

Fair and explainable AI pipelines

Is your model treating different classes fairly?

BUSINESS 11.19.2019 09:15 AM

The Apple Card Didn't 'See' Gender—and That's the Problem

The way its algorithm determines credit lines makes the risk of bias more acute.

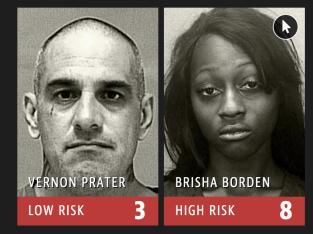
MONEYBOX

Amazon Created a Hiring Tool Using A.I. It Immediately Started Discriminating Against Women.

By JORDAN WEISSMANN

OCT 10, 2018 • 4:52 PM

Two Petty Theft Arrests



Borden was rated high risk for future crime after she and a friend took a kid's bike and scooter that were sitting outside. She did not reoffend.

Jerome Pesenti @an open mind

#gpt3 is surprising and creative but it's also unsafe due to harmful biases. Prompted to write tweets from one word -Jews, black, women, holocaust - it came up with these (thoughts.sushant-kumar.com). We need more progress on #ResponsibleAl before putting NLG models in production.

Can you explain your model results?

Why did the A-level algorithm say no?

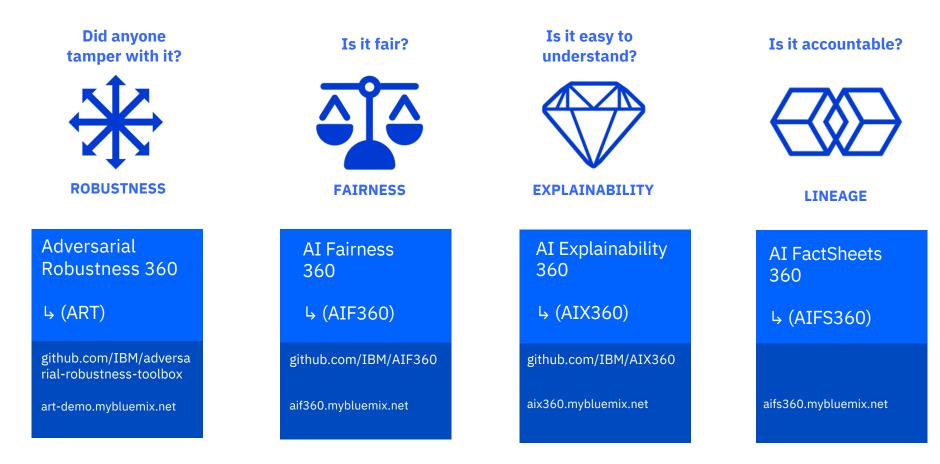
Sean Coughlan Education correspondent

() 14 August 2020

Exam results 2020

A protest over A-level results gathered in Westminster

Trusted AI Lifecycle through Open Source Pillars of trust, woven into the lifecycle of an AI application



09:00 - 09:10: Introductory remarks

09:10 - 09:30: Fair and Explainable AI

09:30 - 10:15: Remove Unfair Bias in Machine Learning

10:15 - 10:30: Break

10:30 - 11:05: Explain Machine Learning Models

11:05 - 11:40: Build a machine learning model and monitor the performance, bias and drift

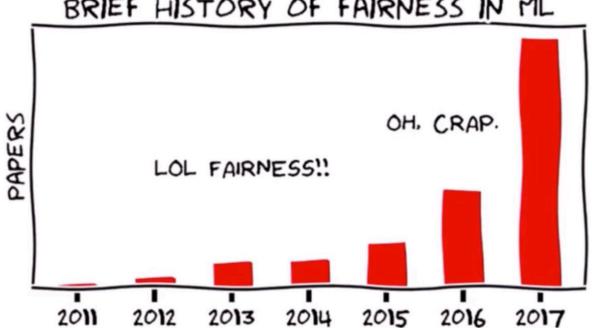
11:40 - 11:50: Summary & Next Steps including Q&A

11:50 - 12:00: Closing remarks

https://margriet-groenendijk.

gitbook.io/trusted-ai-workshop

Part 1: Remove Unfair Bias in Machine Learning



BRIEF HISTORY OF FAIRNESS IN ML

(Hardt, 2017)

What is Fairness?

There are 21 definitions of fairness Many of the definitions conflict The way you define fairness impacts bias

AI Fairness 360 └ (AIF360)

https://github.com/IBM/AIF360

Toolbox

Fairness metrics (70+) Fairness metric explanations Bias mitigation algorithms (10+)

http://aif360.mybluemix.net/

Extensible Toolkit for Detecting, Understanding, & Mitigating Unwanted Algorithmic Bias Leading Fairness Metrics and Algorithms from Industry & Academia

Designed to **translate new research** from the **lab to industry practitioners** (using Scikit Learn's fit/predict paradigm)

Fairness Terms

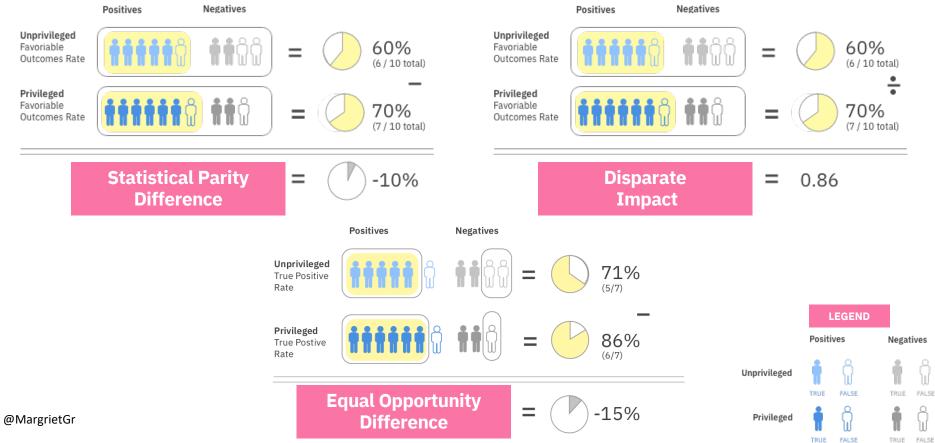
Protected Attribute – an attribute that partitions a population into groups whose outcomes should have parity (ex. race, gender, caste, and religion)

<u>Privileged Protected</u> <u>Attribute</u> – a protected attribute value indicating a group that has historically been at systemic advantage <u>Group Fairness</u> – Groups defined by protected attributes receiving similar treatments or outcomes

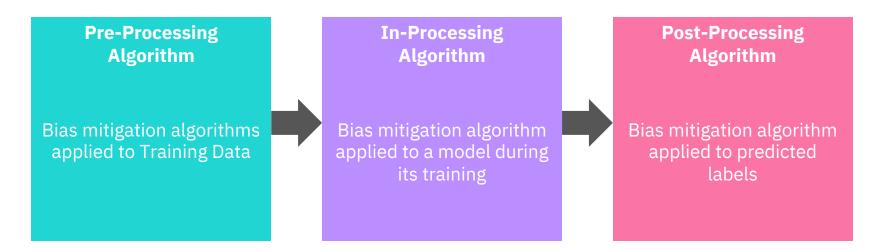
<u>Individual Fairness</u> – Similar individuals receiving similar treatments or outcomes <u>Fairness Metric</u> – a measure of unwanted bias in training data or models

<u>Favorable Label</u> – a label whose value corresponds to an outcome that provides an advantage to the recipient

How To Measure Fairness – Some Group Fairness Metrics



Where Can You Intervene in the Pipeline?



- If you can modify the Training Data, then pre-processing can be used
- If you can modify the Learning Algorithm, then in-processing can be used
- If you can only treat the learned model as a black box and can't modify the training data or learning algorithm, then only post-processing can be used

Tradeoffs - Bias vs. Accuracy

- 1. Is your model doing good things or bad things to people?
 - If your model is sending people to jail, may be better to have more false positives than false negatives
 - If your model is handing out loans, may be better to have more False Negatives than False Positives
- 2. Determine your threshold for accuracy vs. fairness based upon your legal, ethical and trust guidelines

LEGAL Doing what is legal is top priority (Penalties)

ETHICAL What's your company's Ethics (Amazon Echo)

TRUST Losing customer's Trust costly (Facebook)

Preventing Bias Is Hard!

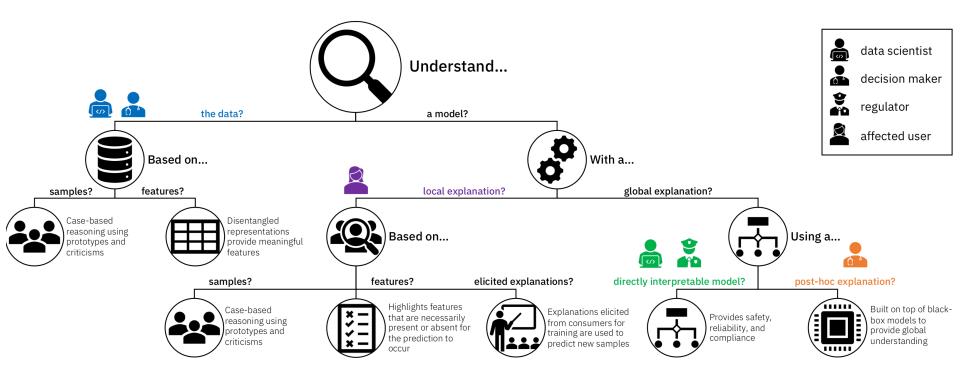
Work with your stakeholders early to define fairness, protected attributes & thresholds Apply the earliest mitigation in the pipeline that you have permission to apply Check for bias as often as possible using any metrics that are applicable Caveat: AIF360 should only be used with well defined data sets & well-defined use cases

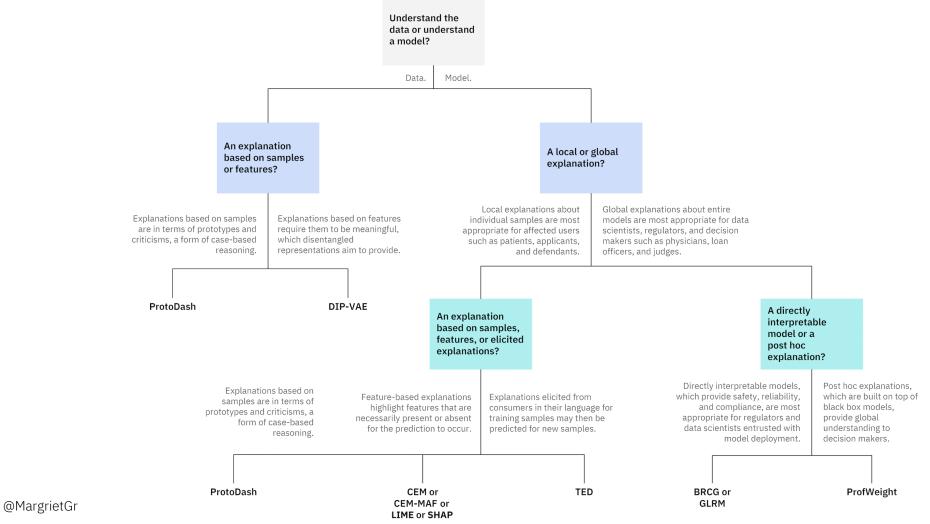
Part 1: Remove Unfair Bias in Machine Learning

Hands-on

Break until 10:30

Part 2: Explain Machine Learning Models





source: IBM Research AI Explainability 360

FICO Explainable Machine Learning Challenge dataset

Use the information about the applicant in their credit report to predict whether they will make timely payments over a two-year period

Choose a consumer type

Data Scientist

must ensure the model works appropriately before deployment

Loan Officer

needs to assess the model's prediction and make the final judgement

http://aix360.mybluemix.net/

Bank Customer

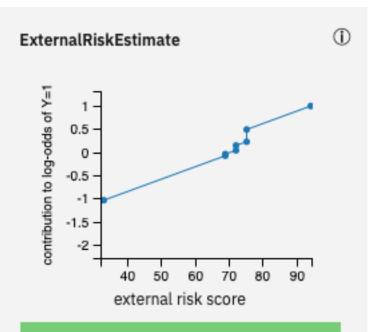
wants to understand the reason for the application result

A Data Scientist wants to understand:

What is the overall logic of the model in making decisions? Is the logic reasonable, so that we can deploy the model with confidence?

ExternalRiskEstimate is an important feature **positively correlated with good credit risk**.

The jumps in the plot indicate that applicants with above average ExternalRiskEstimate (the mean is 72) get an additional boost.



A Loan Officer wants to understand:

Why is the model recommending this person's credit be approved or denied? How can I inform my decision to accept or reject a line of credit by looking at similar individuals?

		Alice	Mia	Kate	Cala
0	Outcome	-	Paid	Paid	Paid
\bigcap	Similarity to Alice (from 0 to 1)	-	0.765	0.081	0.065
Alice	ExternalRiskEstimate	82	85	80	89
Approved	MSinceOldestTradeOpen	280	223	382	379
, ppi or ou	MSinceMostRecentTradeOpen	13	13	4	156
	AverageMInFile	102	87	90	257
	NumSatisfactoryTrades	22	23	21	3
	NumTrades60Ever2DerogPubRec	0	0	0	0
	NumTrades90Ever2DerogPubRec	0	0	0	0
	PercentTradesNeverDelq	91	91	95	100
	MSinceMostRecentDelg	26	26	69	0

A Loan Officer wants to understand:

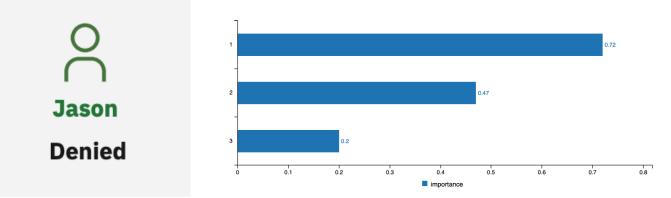
Why is the model recommending this person's credit be approved or denied? How can I inform my decision to accept or reject a line of credit by looking at similar individuals?

		Robert	James	Danielle	Franklin
0	Outcome	-	Defaulted	Defaulted	Defaulted
	Similarity to Robert (from 0 to 1)	-	0.690	0.114	0.108
Robert	ExternalRiskEstimate	78	71	72	69
	<u>MSinceOldestTradeOpen</u>	82	95	166	193
Denied	MSinceMostRecentTradeOpen	5	1	12	12
	AverageMInFile	54	43	74	167
	NumSatisfactoryTrades	33	33	37	36
	NumTrades60Ever2DerogPubRec	0	0	1	0
	NumTrades90Ever2DerogPubRec	0	0	1	0
	PercentTradesNeverDelq	100	100	95	100
	MSinceMostRecentDelq	0	0	7	0

A Bank Customer wants to understand:

Why was my application rejected?

What can I improve to increase the likelihood my application is accepted?



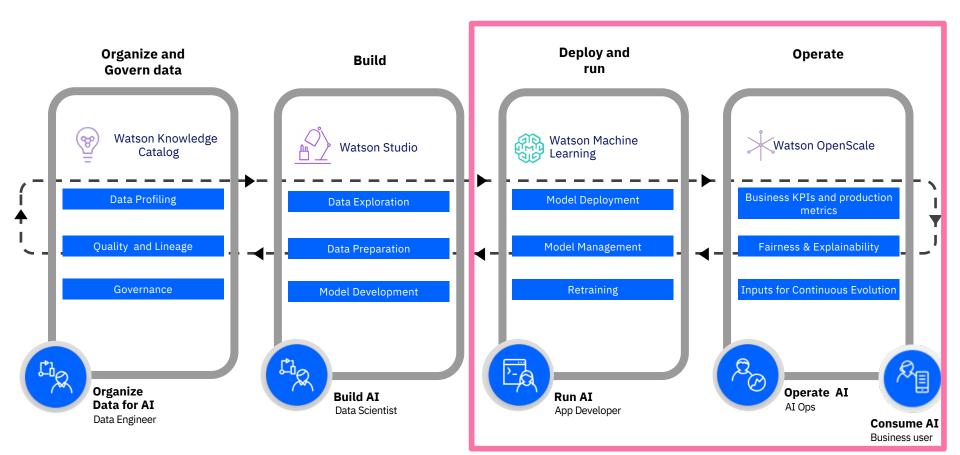
- 1. The value of **Consolidated risk markers** is **65**. It needs to be around **72** for the application to be approved.
- 2. The value of **Average age of accounts in months** is **52**. It needs to be around **68** for the application to be approved.
- 3. The value of **Months since most recent credit inquiry not within the last 7 days** is **2**. It needs to be around **3** for the application to be approved.

Part 2: Explain Machine Learning Models

Hands-on

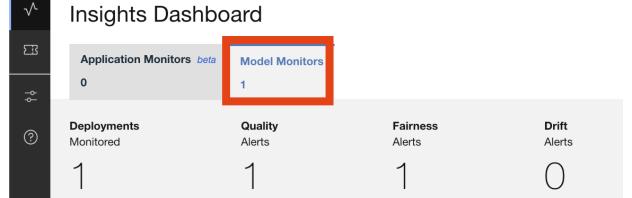
Part 3: Monitor the performance, bias and drift

AI pipeline in Cloud Pak for Data (aaS)

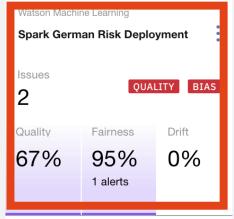


Part 3: Monitor the performance, bias and drift

Hands-on



1 Quality and Fairness metrics update every hour. Drift metrics update every 3 hours.



@MargrietGr

Evaluated 5 minutes ago

Fairness

Drop in accuracy

Performance

Throughput

Analytics

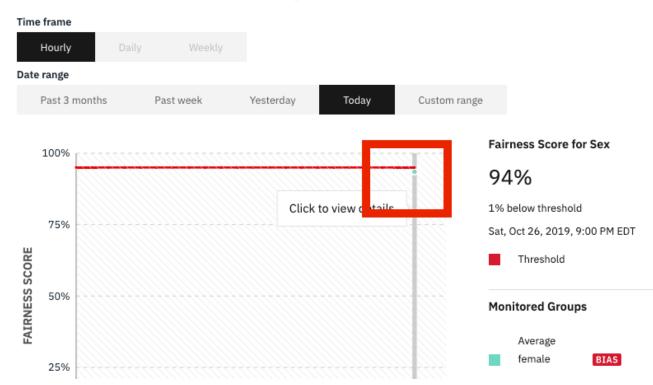
Predictions by Confidence

Chart Builder

Fairness for Sex

Δ

The models propensity to deliver favorable outcomes to one group over another. Learn more.



🕞 Spark German Risk Deployment: Transactions

Dat	a Set (٦		Monitored Feature		Date and Time	
۲	Payload	+ Perturbed O Paylo	oad 🔿 Training 🔿 Debiase	ed Sex	•	10/26/2019	9:00 PM
7	3% of th	ed groups (j) he group female favorable outcomes.	Reference grou 78% of the grou received favorab	p male	★ Recommendation Watson OpenScale cre 6% more fair.	ated a model that is	
		Favorable outcomes No Risk	Unfavorable outcomes Risk				View Transactions
	100% 90% 80%						
% OF FAVORABLE OUTCOMES	70% 60% 50% 40% 30% 20% 10%		73%			78%	
			BIAS female		-	male	

Spark German Risk Deployment: Transactions

October 31, 2019, 2:00 AM

View	
O All transactions	Biased transactions

This subset of transactions received biased outcomes. Click the Explain link to determine how the monitored feature contributed to each unfavorable outcome. ①

Transaction ID	Туре	Outcome	Action
dc552a8ff80c6d30a1a15c875f7ed6c3-168	Original	Risk	<u>Explain</u>
dc552a8ff80c6d30a1a15c875f7ed6c3-53	Altered	Risk	<u>Explain</u>
dc552a8ff80c6d30a1a15c875f7ed6c3-199	Altered	Risk	<u>Explain</u>
dc552a8ff80c6d30a1a15c875f7ed6c3-37	Original	No Risk	<u>Explain</u>
dc552a8ff80c6d30a1a15c875f7ed6c3-101	Altered	No Risk	<u>Explain</u>

Fairness Correction Table (i) Manual_Labeling_430ce9f4-72c6-48fa-b98e-662a18211bdb

Sex

No Risk : Favorable Outcome

Current Model	73.00%
De-biased Model	77.50%
Risk : Unfavorable Outcome	
Current Model	27.00%
De-biased Model	22.50%

✓ dc552a8ff80c6d30a1... ×

Details (j)		Minimum changes for No Risk outcome 🛈 Maximum changes allowed for the same outcome		allowed for the same outcome 🏾 🛈	
Transaction Deployment Model Name Type	dc552a8ff80c6d30a1a15c875f7ed6c3-168 Spark German Risk Deployment Spark German Risk Model Original	LoanDuration Sex InstallmentPercent	21.0 male 3.0	CheckingStatus LoanDuration CreditHistory	no_checking 38.0 credits_paid_to_date
			\sim		

How this prediction was determined

The **Spark German Risk Model** predicts **Risk** with 55.91% confidence. The following features were most important in determining this prediction: LoanDuration (23.31%), CheckingStatus (19.92%), and EmploymentDuration (16.59%).

Most important factors influencing prediction

Feature	Value	Weight
LoanDuration	38	23.31%
CheckingStatus	no_checking	19.92%
EmploymentDuration	greater_7	16.59%

No Risk	CONFI	CONFIDENCE		
44.09%			55.91%	
Factors contributing to No Risk confidence level			Factors contributing to Risk confidence level	
OthersOnLoan: none			LoanDuration: 38	
	11.14%	23.31%		
Age: 36			CheckingStatus: no_checking	
	6.11%	19.92%		
Telephone: none	2.35%	47 500	EmploymentDuration: greater_7	

Drift

IBM Watson OpenScale

Dashboard /

 \checkmark

53

ð

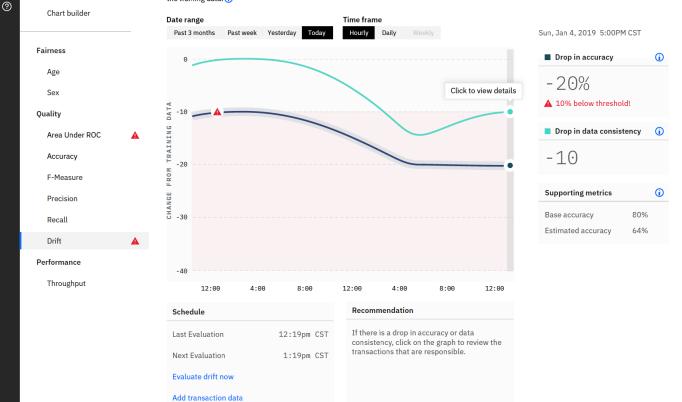
credit-risk-modeling

Drift

Analytics

Confidence over time

The drift monitor estimates the drop in accuracy of the model and the drop in data consistency based on the training data. (



Drift

 \checkmark

입

53

ф ? PM 🔻

05:00

Dashboard / Drift

credit-risk-modeling : Drift

View the transactions responsible for a drop in accuracy, a drop in data consistency, or both.

Select a transaction set from the chart or list below 200 Transactions responsible for drop in accuracy 80 Transactions responsible for drop in accuracy and data consistency 200 Transactions responsible for drop in data consistency 200		
 Transactions responsible for drop in accuracy 80 Transactions responsible for drop in accuracy and data consistency 200 	Select a transaction set from the chart or list below	200
Transactions responsible for drop in accuracy and data consistency 200	Transactions responsible for drop in accuracy	
	Transactions responsible for drop in accuracy and data consistency	
	Transactions responsible for drop in data consistency	200

Transactions responsible for drop in accuracy

Number of transactions

200

Drop in accuracy

11%

120

Number of transactions

Features responsible for drop in accuracy

Profession

State

for Influence on accuracy Large influence

Some influence

Number of transactions	
80	

CheckingStatus

Features responsible for drop inIaccuracy and data consistencya

🛗 January 4, 2019

Influence on accuracy

Large influence

Summary

Is it fair?

FAIRNESS

Is it easy to understand?

EXPLAINABILITY

AI Fairness 360

└> (AIF360)

github.com/Trusted-AI/AIF360

aif360.mybluemix.net

AI Explainability 360

└> (AIX360)

github.com/Trusted-AI/AIX360

aix360.mybluemix.net

